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Some new lattice sums including an exact result for the 
electrostatic potential within the NaCl lattice 

P J Forrester and M L Glasser? 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 27 August 1981 

Abstract. The electrostatic potential at point (i, %, 6) in the unit cell of side length 2 
of the NaCl lattice is found to be 43 .  An ndimensional generalisation of a dipole sum, 
evaluated exactly by Glasser and Zucker in the case n = 2, is given. 

1. Introduction 

The problem of evaluating physically applicable lattice sums has a long history. In 
particular, the numerical evaluation of electrostatic lattice sums has its origin' in the 
work of Madelung (1918) and Ewald (1921). However, the exact evaluation of these 
important sums has received little attention until comparatively recently (Glasser 
1973). A recent review (Glasser and Zucker 1980) contains a very extensive listing of 
exact results, especially in two dimensions. In this review, it is pointed out that very few 
lattice sums in three dimensions of the form 

have been evaluated exactly. In equation (l), i,b(r, f) is the electrostatic potential at the 
point r within the unit cell of a simple cubic ionic crystal with charges qi at ri, 
i = 1,2, . . . , N, E:'=, qi = 0, and unit cell of side length 1. This note reports several new 
lattice sums including an exact result for the NaCl structure. Apart from its intrinsic 
interest, this result provides a useful test for checking the accuracy of numerical. 
algorithms for computing the potential $(r, 3). 

2. Calculation 

Consider first an NaC1-type lattice with unit cell of side length 2 containing charges + 1 

(1, 1,l). The electrostatic potential at r E [ - T ,  T] (this choice of unit cell avoids 
fractional charges) may be written 

at (O,O, O), (1 ,L 01, (LO, 11, (0,1,1) and charges -1 at (LO, O), (0,L 01, (O,O, 11, 
1 3 0 3  

I=-m m=-m n=-m 
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Because the unit cell has zero dipole and quadrupole moments, this lattice sum is 
absolutely convergent (De Leeuw et a1 1980). Equation (2) may be evaluated exactly 
for r = ( - a ,  - $, -$). Symmetry considerations then give the same value for r = ( x ,  y ,  z ) 

with x ,  y ,  z being any of f 6 ,  g, g. 1 5 7  

Jacobi (1829) lists the identity 

) 3  = "IO 1 (-1)"(2n + l ) q ( n 2 + " ) ' 2 .  (31 

Following the method of Glasser (1973) we substitute q = e-:' in (3). By multiplying 
both sides by a suitable function F ( t )  and integrating over f from 0 to 03 we obtain the 
reduction formula 

( f ( - l ) m q ( 3 m 2 + m ) / 2  

m=--a: 

m 

= (-1)"(2n + l>@($(n +y)  
n =O 

141 

where @ ( p )  denotes the Laplace transform of F. In particular for @(pj = p i  e l ip '  ' we 
obtain 

m m - a :  

C [ ( I  +$I' + (m +612+ ( n  +6)2]vexp{-a[(/ +k)2+ (m + $ ) 2  + (n +GI  1 2  ] 112 1 
/=-cc m=-m n = - - ~ )  

The sum on the right-hand side can be evaluated in closed form whenever v is integral 
or half integral. For example Y = - $ gives 

A second example of physical interest may be obtained by taking @ ( p )  = ( p  + a2j L' 

Which gives 

The sum on the RHS can be evaluated when a # 0, v = integer 
function, and when a = 0, v > f, in terms of 

a 

P ( s )  = c (-1)"(2n + 1)y 
n = O  

(and thus for all Y with larg V I  < rr by analytic continuation). 

in terms of the digamma 

One other curious result, which arises by setting @ ( p )  = p - "  sech is 
1 2 112 

= O  (- 1) sech n;u [(I + i)' + ( m  + 6)' + (n  + d 1 
[=-cc ? m=-m f n=-m f -  [(1+ i$)2 + (m + ,$)2 + ( n  + ;)'Iy (9) 

- 
whenever p =J3, U = 1-29 or p = 3, v = 1 -3q (q  = 1 , 2 . 3 . .  . 
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A similar sequence of results can be obtained by manipulating the LHS of (3), so that 
the q series becomes 

By carrying out the analysis which led to equation (7) we find 

Equation (1 1) is the electrostatic potential within a crystal of rectangular unit cells, with 
alternating positive and negative point charges along the three orthogonal axes. 

We conclude this note with the n-dimensional generalisation of the sum (5.7) in 
Glasser and Zucker (1980) (the case n = 2  arises when calculating the dielectric 
constant in a cubic crystal): 

(12) 
(-$In 2 1/2 (1: + 1: + . . . + 1,) (-1) f , + f 2 +  ...+ l" 

2 1/2 =- (n + ~ ) I T  e 

s, = f 
i1,i2 ...., 1,=1 sinh ~ ( 1 :  + 1'2 +. . .+ 1,) 

To demonstrate this, we use the elementary summation formula 

1 IT m 

f l=-m 

It follows that 

where F(0,  a )  = 1 and F is continuous for p 3 0. Take a 2  = 1: + 1: + . . . + 1:+1, multiply 
both sides by ~ ~ ( - l ) ' ~ + ~ ~ + . . . + ~ ~ + l ,  and sum over 12,  1 3 ,  , . . , from 1 to 00 to get 

(- 1)~l+~2+. . .+~"+ + 1: + . . . + t,++1) exp[-p (1: + 1: + . . . + 1",1)1 
2 f  f I * l Z .  ... A + I =  1 1: +1'2 +. . .+1:+1 

Cyclically interchange summation labels n + 1 times, then add the resulting n + 1 
equations. This gives 

Taking the limit p -0 in (13d) gives the required result (12). 
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